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Abstract 
Shadow removal is crucial for robot and machine vision as the accuracy of object detec-

tion is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, 
we introduce a new algorithm for shadow detection and removal based on different shapes, 
orientations, and spatial extents of Gaussian equations. Here, the contrast information of the 
visual scene is utilized for shadow detection and removal through five consecutive processing 
stages. In the first stage, contrast filtering is performed to obtain the contrast information of 
the image. The second stage involves a normalization process that suppresses noise and gen-
erates a balanced intensity at a specific position compared to the neighboring intensities. In 
the third stage, the boundary of the target object is extracted, and in the fourth and fifth stag-
es, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was 
tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The 
results reflect the ability of our approach to detect and remove shadows and reconstruct a 
shadow free image with a small error of approximately 6%.  

  
Keywords: Shadow Distribution Visualization, Spatial Analysis of Shadows, Filtered Da-

ta Visualization, Data Normalization, Shadow Removal, Machine and Robot Vision. 

 

1. Introduction 
Shadows pose a problem in robot, machine, and computer vision in general. Shadows 

share movement and shape with the related object, and as a consequence, confusion occurs 
due to object detection or obstacle avoidance. Although shadows can help interpret a visual 
scene such as image intensity and object configuration ([1], [2]), shadows corrupt many ap-
plications such as object monitoring, objects recognition, and image decomposition ([3]- [5]). 
In the literature, shadows have been classified as self-shadows and cast shadows, in which 
object projections on the background are denoted as cast shadows, on the other hand, the 
shadow projection on the object itself is referred to as a self-shadow ([6] [7] [8]). 

Many approaches have been suggested for shadow detection and removal. These ap-
proaches have addressed the problem of shadows in different applications (see, [9]-[10]). In 
the studies by ([11]-[12]), the authors show the unfavourable influence of shadows in the vis-
ual scene of an agricultural robot. They suggest using image segmentation algorithms, ultra-
metric contour maps, and machine learning techniques to remove shadows from an image. 
Several researchers, on the other hand, have assessed the authenticity of an image by remov-
ing the incorrect shadows in the edited images (see for example, [13]). These studies have in-
vestigated the effects of shadows in detecting forgeries by revealing the inconsistencies in an 
image, such as the coherence between the shadows and light direction (see, [14] and [15]. 
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Several works have concentrated on a fine-grained analysis of colour distributions in an 
image.  In [16], the authors suggested combining an edge conditional random field (CRF) to 
classify edges in consumer photographs.  A related method presented by [17] considers a 
moving viewpoint by comparing variant and invariant shadow features. These features pri-
marily comprised colour, texture, edge which were then embedded into a segmentation pipe-
line that provides predictions of the shadow status. 

Many studies (for example [18]-[19], [13] and ) use neural networks and learning-based al-
gorithms for shadow detection and removal. These algorithms require learning regarding 
both the images that contain shadows, as well as the corresponding images that do not con-
tain shadows (i.e., for a specific scene, two images need to be taken in which one contains a 
shadow and the other does not). Consequently, these algorithms require a training process 
with a large number of images with different cases (see,  [20]). 

As the shadow region in most cases involves gradual changes in luminance, some re-
searchers tend to use the gradient-based algorithm for shadow removal (see [21]). This an al-
gorithm assumes that the intensity of the shadow regions changes gradually, and as a conse-
quence, this algorithm fails if the shadow has a sharp texture [8].  

Shadow detection and removal has two main challenges: how the shadow region can be de-
tected accurately in a complex scene, and how the shading can be removed yet keeping the 
details and information of the region and without defecting the boundaries of the objects (see, 
[22], [23]). In essence, shadows are a critical issue for object recognition systems and require 
further investigation and development. In this work, the distribution of intensity for an object 
along with its shadow is visualized and analyzed to eliminate the shadow's intensity effect us-
ing various types of data filtering. We propose an algorithm that handles real-world shadows 
and removes them. This algorithm consists of five consecutive processing stages. In the first 
stage, contrast information is detected using Gaussian derivative functions along the x and y 
directions. In the second stage, the contrast information is normalized to generate a balanced 
activity at a specific position in relation to neighboring activities. Moving to the third stage, 
the boundary of the (ROI) for the target object is extracted. Subsequently, in the fourth and 
fifth stages, the interior of the detected object is highlighted and reconstructed, respectively. 
This algorithm can be used in different applications, such as robot and machine vision. Un-
like the state-of-art approaches ([13] and [24], [25]) for shadow detection and removal, our 
algorithm does not require a training process on different shadows and shadowless images. 
Our mechanism reconstructs a target object in a shadowless image through five stages using 
Gaussian equations with different shapes and orientations. 

The rest of the paper is structured as follows. Section 2 introduces the suggested method-
ology for shadow detection and removal. The discussion and experimental results of the pro-
posed algorithm are presented in Section 3. Finally, Section 4 presents the conclusions and 
summarizes the contribution of this work. 

2. Shadow Elimination Approach 
In this work, we detect and eliminate the shadow of an image using five consecutive stages. 

The first stage involves achieving contrast filtering information of the image by utilizing the 
first-order derivative of the Gaussian function along the x and y axes. This information is then 
normalized in the second stage. In the third stage, we extract the shadowless boundary of the 
target object. Moving to the fourth stage, we highlight the obtained enclosed region of the ob-
ject contour. Finally, in the fifth stage, we use this region to reconstruct the object in the visu-
al scene without any shadow. Fig. 1 presents the linear scheme of the suggested approach. In 
the following subsections, we provide detailed descriptions of each stage.  

 



 
Fig.1 The linear scheme of suggested approach. 

 

2.1. Contrast Filtering 

In this stage, the object in the visual scene is detected based on contrast information of the 
Gaussian derivative functions along x and y directions. The first-order derivative of the 
Gaussian function in 2D (x,y) space is defined by 

𝑓𝑑𝑖𝑣 = √(𝐼 ∗ 𝑔𝑥)2 + (𝐼 ∗ 𝑔𝑦)
2

, 

where (I) represents the input image and * denotes the spatial convolution operator, 𝑔𝑥 and 
𝑔𝑦 denote Gaussian derivative kernels along x and y directions, respectively. Since an object 

edge is an elongated change in the spatial domain, we propose using the derivative function 
of an elongated Gaussian kernel. The first stage of Fig.1 shows the kernels of the 2D spatial 
derivative of the Gaussian function. The partial derivatives are thus calculated by   

𝑔𝑥 = (−𝑥/𝜎𝑥
2) ⋅ 𝛬𝜎𝑥1,𝜎𝑦1

 

𝑔𝑦 = (−𝑦/𝜎𝑦
2) ⋅ 𝛬𝜎𝑥2,𝜎𝑦2

 

where Λσx1 ,σy1 and Λσx2, σy2 represent Gaussian functions with 2D spatial extent (𝜎𝑥1, 𝜎𝑦1) 
and (𝜎𝑥2, 𝜎𝑦2) in x and y directions, respectively.  

2.2. Normalization 
In order to suppress noise and achieve a balanced intensity response in the spatial domain, 

we normalize the response of each location based on the relevant neighbourhoods (see [26], 
[27]). The normalization process is thus defined by 

𝑓 = 𝑓div ∕ (𝜀 + 𝑓div∗ 𝛬𝜎) 
where 𝜀 represents a small value to prevent the equation from zero division and 𝛬 represents 
a fall-off function that weights the intensity of the spatial neighbourhoods of the target posi-
tion in the image based on the spatial extent 𝜎. 

2.3. Shadowless Boundary Extraction 

To focus on the edge of the target object and reduce the rest of the information, we gener-
ate a binary image. Image binarization is thereby performed in such a way that the edge of the 



target object is set to 1 (white) and the rest of the information (shadow, noise, and back-
ground), on the other hand, is set to 0 (black). Thus, the generated edge here represents the 
shadowless boundary of the target object. Image binarization 𝑓𝑒𝑑 thus is given as 

∀𝑓 ≥ 𝑇1, 𝑓𝑒𝑑 = 1, 
∀𝑓 ≥ 𝑇1, 𝑓𝑒𝑑 = 0. 

Where 𝑓𝑒𝑑 represents the detected edge, and T1 represents a threshold value that separates 
the boundary of the shadowless object and the rest information of the image. This boundary 
is then delivered to the next stage, in which the (ROI) is blurred and highlighted. 

2.4. Highlighting the Region of Interest 
In this stage, the region representing the shadowless object was highlighted, as it is re-

ferred to as the (ROI). As mentioned previously, the binary image contains the edge of the 
shadowless object and ignores the rest of the information. As a consequence, the ROI, here, 
represents the interior of the generated boundary and thus represents the body of the shad-
owless object in the visual scene. The spatial ROI is blurred and highlighted based on the 2D 
bell shape function g. Consequently, the ROI is described by 𝐼 = 𝑔 ∗ 𝑓𝑒𝑑, in which '*' denotes 

the convolution operator, 𝑔 =
1

2𝜋𝜎2 exp −
𝑥2+𝑦2

2𝜎2 , and σ is the spatial extent of the 2D bell shape 

function. The blurred ROI is then delivered to the next stage, in which the target object is re-
constructed in a shadowless image. 

2.5. Shadowless Object Reconstruction 

In this stage, the shadowless object and image background are reconstructed in a new im-
age. The new image 𝑃, thus combines the shadowless object and the image background, as 
defined by 

∀𝐼 ≥ 𝑇2, 𝑃𝑖𝑗 = 𝐼𝑖𝑗 

∀𝑓𝑏𝑎𝑘 < 𝑇2, 𝑃𝑖𝑗 = 𝑓𝑏𝑎𝑘𝑖𝑗
 

Where 𝑇2 denotes a threshold value (i, j) represent the spatial coordinates in the 2D space 
of the original image I and background image 𝑓𝑏𝑎𝑘. 

3. Intensity Distribution of Shadow Regions 
To investigate the intensity distribution in images that include shadow regions, Fig. 2 

shows the intensity of the three scenes. The first column shows the original images with the 
shadow region, see(a1-a3). The second column (b1-b3) illustrates the foreground part of the 
images. Here, the foreground of the images is defined by 

∀𝐹𝑥,𝑦 ≤ 𝑚𝑢, 𝐼𝑥,𝑦
𝑓𝑜𝑟

= 𝐹𝑥,𝑦. 

The 𝑚𝑢 represents the threshold value that separates the foreground and the background. 
In our implementation the value of foreground separation is  𝑚𝑢 =60.  

The intensity distribution of the relative images is shown in Fig. 3, where the x-axis repre-
sents the intensity values, and the y-axis represents the number of pixels. These plots reflect 
the distribution of the intensities for the foreground images. The plot reveals that the intensi-
ty of the foreground images (object) merited a small area of intensity as highlighted the third 
column in Fig. 2. However, shadow and noise are spread over a larger region of intensity. 
Since the foreground image has a monochrome background (white), the intensity value (255) 
covers the highest number of pixels. As a consequence, the target object is separated from the 
shadows and noise, as defined by 

∀𝐼𝑥,𝑦
𝑓𝑜𝑟

≤ 𝑘, 𝐼𝑥,𝑦
𝑜𝑏𝑗𝑒𝑐𝑡

= 𝐼𝑥,𝑦
𝑓𝑜𝑟

. 

Where 𝑘 represents the shadowless separation value. In our implementation, the value of 𝑘 
is set to 60. To keep the object same size as the shadowless objects, we represent the shadow-
less object on a black background as shown in the third column (d1-d3) in Fig. 2. The results 
reveal that the shadow intensity in many cases can be separated from the target object based 



on the distribution of the image intensity. However, the separation value of the shadowless 
object is a critical issue and depend on the lighting conditions, and thus different values could 
be selected for the other databases. 

 

 
Fig.2 Intensity distributions in different images. The first column (a1-a3) shows the orig-

inal images with shadow regions. The second column (b1-b3) illustrates the foreground of 
the images. The third column (d1-d3) represent the shadowless object on a black back-

ground. 
 

 
Fig.3 The distribution of the intensities for the foreground images. The x-axis represents 

the intensity values, and the y-axis represents the number of pixels. 
 



4. Results and Discussion 
To evaluate the performance of our mechanism, we tested it with realistic scenarios that 

contain self-shadows (i.e., shadows linked with objects). Since in the future we plan to focus 
on human action recognition as an extended work, we used the KTH database [28]. The KTH 
database is characterized as complex scenarios with shadows around the target objects in dif-
ferent locations. This dataset provides a valuable benchmark for evaluating shadow detection 
and elimination methods. In our evaluation, different subjects with different scenes are ad-
dressed. In addition, this database has a relatively low resolution, making detecting shadows 
complex. Since the scenarios of the KTH database contain moving objects, we used the back-
ground subtraction technique to extract these objects [29]. Here, the median value of consti-
tutive frames is considered as a background of the scenario 𝐼𝑥,𝑦  = median{ 𝐹𝑥,𝑦,𝑡}. Where t ∈ 

{1, 2, ...m}   and m denotes the number of frames used for background subtraction. Following 
the suggestion of [30], we restored the designated scene with static backgrounds, ∀ (F_(x,y)- 
I_(x,y)) < d, I_(x,y) = F_(x,y), where d represents a small value that describes the disparity 
between the background I and the foreground F. 

Table 1 presents the parameters of the proposed model. In our performance, the shortest 
length of the dataset scenarios is used (see [31]), and as a consequence, the number of frames 
used for background subtraction is m=28. The size of the Gaussian derivative kernels (gx, gy) 
is (40 × 40) in which the spatial extent σx1, σy1 are 3, 5 and the spatial extent σx2, σy2 are 5, 3, 
respectively. The relative disparity of the foreground and background value is d=50. The val-
ues of the threshold parameters are T1, T2 are 0.5, 0.2, respectively. In the normalizing pro-
cess, the size of the Gaussian window Λ in the spatial domain is (49 × 49) in which the value 
of σ is 10 and the value of ε is 0.3. 

 
TABLE I Parameters used in our model. 

Definition variable value 

The number of frames used 
for background subtraction 

m 28 

Gaussian derivative kernels (gx, gy) (40 × 40) 

spatial extent σx1, σy1, σx2, σy2 3, 5, 5, 3 

The relative disparity of the 
foreground and back-
ground value 

d 50 

Threshold parameters T1, T2 0.5, 0.2 

The size of the Gaussian 
window 

Λ (49 × 49) 

Normalizing parameter ε 0.3 

 
We examined the performance of our model by probing it with the KTH database. We se-

lected several scenes from the KTH database with different subjects. As previously men-
tioned, our mechanism aims to eliminate the shadow from an image and to reconstruct it as a 
shadowless image. Here, we focus on the scenes that contain shadows and select different in-
door and outdoor scenarios. These scenarios include different scenes and, moving objects es-
corted by shadows appearing in different directions. Fig. 4 shows four images from indoor 



scenarios of the KTH dataset. As mentioned in Section 2, the shadow was detected and elimi-
nated from the image using four stages. Fig. 4 shows the results of the four processing stages 
in which each row represents one of the selected images (with a coherent shadow), and each 
column shows the results of the proposed stages. Here, the first column ((a1-a4)-in) shows 
the (origin) images that contain shadows, and the second column ((b1-b4)-in), on the other 
hand, presents the detected contour of the target object. The third column ((c1-c4)-in) shows 
the highlighted ROI. Finally, the fourth column ((d1-d4)-in) shows the reconstruction of the 
shadowless images. By way of illustration, the eliminated shadows in the fourth column of 
Fig. 4 are circled. The results reveal that our mechanism can detect and eliminate the shad-
ows from indoor images and reconstruct them as shadowless images. To verify the robustness 
of our mechanism for the shadow removal from outdoor images, we tested our mechanism 
with several outdoor images from the KTH dataset as shown in Fig. 5. We selected three sce-
narios containing shadows from the outdoor database. These scenarios were probed through 
the suggested consecutive stages in which the results of each stage are shown in the relative 
column in Fig. 5. The first column ((a1-a3)-out) shows the original scenes of the selected sce-
narios, while the second and third columns ((b1-b3)-out) and ((c1-c2)-out) show the edge de-
tection and the highlighted ROI, respectively. The shadowless images are reconstructed in the 
fourth column ((d1-d3)-out). Again, the regions of the eliminated shadows are circled in the 
fourth column in Fig. 5. The results show that our mechanism is able to detect and eliminate 
the shadows from outdoor scenes and reconstruct images into shadowless images. 

 

 
Fig. 4 Indoor images of the KTH dataset. The first column ((a1-a4)-in) shows the (origi-

nal) images that contain shadows, and the second column ((b1-b4)-in) presents the detected 
contour of the target object. The third column ((c1-c4)-in) demonstrates the highlighted ROI. 
The fourth column ((d1-d4)-in) shows the reconstruction of the shadowless images in which 

the regions of the eliminated shadows are circled. 
 
In order to measure the accuracy of the shadow removal approach, we calculated the total 

error, 𝑒𝑡, which is determined by 



𝑒𝑡 = ∑ 𝑒𝑖 

𝑛

𝑖=1

, 

𝑒𝑖 =
𝑁𝑖

𝑀𝑖
 . 

Where 𝑒𝑡represents the summation of the error values for  {i = 1...n} in which n denotes 
the number of images, 𝑒𝑖represents the error of the shadow removal for image i and Ni de-
notes the number of pixels freed from the shadows in image i and 𝑀𝑖 represents the number 
of shadow pixels in the related image i (origin image). The results show that the total error of 
our approach is 6%, which reflects its ability to detect and remove the shadow regions from 
indoor and outdoor scenarios.   

 

 
Fig. 5 Outdoor images of the KTH dataset. The first column ((a1-a4)-out) shows the (orig-

inal) images that contain shadows, and the second column ((b1-b4)-out) presents the detect-
ed contour of the target object. Third column ((c1-c4)-out) demonstrates the highlighted 

ROI. The fourth column ((d1-d4)-out) shows the reconstruction of the shadowless images in 
which the regions of the eliminated shadows are circled. 

5. Conclusions  
We have presented a mechanism for shadow detection and removal. The mechanism is or-

ganized in a cascade of five consecutive processing stages. Contrast filtering is performed in 
the first stage, followed by normalization of the obtained result in the second stage. Next, 
edge extraction is conducted in the third stage to detect the contour of the target object. In 
order to reconstruct the target object in a shadowless image, the interior of the object is high-
lighted in the fourth stage and reconstructed in the fifth stage. The results demonstrate that 
the proposed processing stages enable the detection and elimination of shadow regions from 
an image 

The distribution of the image intensity was investigated and the potential of shadow elimi-
nation based on intensity distributions has been described. In addition, the distribution of the 
image intensity can give an indication regarding the elements in the scene (i.e. object, shad-
ow, and background). However, the distribution of the image intensity is affected by several 
factors such as image resolution and light conditions. As a consequence, the intensity of the 
scene (object and shadow) differs from image to image depending on the adopted database. 



To demonstrate the robustness of the proposed stages to detect and element the shadows 
from certain images, we used the KTH database that contains different scenarios (indoors 
and outdoors) where we focused on the images that contained shadows. The results reflect 
the robustness of our approach for shadow detection and removal with an error of 6%. 

This approach can be extended to address shadow detection and removal in high-
resolution colored images by analyzing and visualizing the distribution of the RGB intensity 
using different levels of data filtering. In addition, this approach can be used for different ap-
plications for more than one object. Our current study exploits the generated shadow-less im-
ages for human action recognition. 
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